Machine Learning on graphs. Node classification

. Makarov & L.E. Zhukov

BigData Academy MADE from Mail.ru Group

Network Science

akanemus i
Gonbumx :
§

|. Makarov & L.E. Zhukov (MADE) Lecture 8 12.04.2021 1/28



Lecture outline

© Node Classification
@ Label propagation and iterative classification

© Semi-supervised learning
@ Random walk based methods. Regularization

© Matrix Factorization
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Graph machine learning

Node classification (attribute inference)
Link prediction (missing/hidden links inference)

Community detection (clustering nodes in graph)

Graph visualization (cluster projections)
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Node classification

Node classification - labeling of all nodes in a graph structure

Subset of nodes is labeled: categorical/numeric/binary values

Extend labeling to all nodes on the graph
(class/class probability /regression)

Classification in networked data, network classification, structured
inference, relational learning
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Node classification

@ Structure can help only if labels/values of linked nodes are correlated

@ Social networks show assortative mixing - bias in favor of connections
between network nodes with similar characteristics:
— homophily: similar characteristics — connections
— influence: connections — similar characteristics

@ Can apply to constructed (induced) similarity networks

@ Node classification by label propagation
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Node classification

Supervised learning approach

@ Given graph nodes V =V, U V,:
— nodes V) given labels Y}
— nodes V/,, do not have labels

@ Need to find Y,

@ Labels can be binary, multi-class, real values

o Features (attributes) can be computed for every node ¢;:
— local node features (if available)
— link features available (labels from neighbors, attributes from
neighbors, node degrees, connectivity patterns)

|. Makarov & L.E. Zhukov (MADE) Lecture 8 12.04.2021 6/28



[terative relational classifiers

@ Weighted-vote relational neighbor classifier:

Plyi = clN) = ZZAUPYJ—C|N)
JEN;

@ Network only Naive Bayes classifier:

PWilc)P(c)

where

P(Nilc) = H P(y; = yjlyi = c)
JEN
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Semi-supervised learning

Graph-based semi-supervised learning

Given partially labeled dataset

o Data: X = X, U X,

— small set of labeled data (X}, Y})
— large set of unlabeled data X,

Similarity graph over data points G(V/, E), where every vertex v;
corresponds to a data point x;

Transductive learning: learn a function that predicts labels Y, for the
unlabeled input X,
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Random walk methods
@ Consider random walk with absorbing states - labeled nodes V;

@ Probability y;[c] for node v; € V,, to have label c,

pilel =) piyjlel
Jjev

where y;[c] - probability distribution over labels,
pij = P(i — j) - one step probability transition matrix
o If output requires single label per node, assign the most probable

@ In matrix form
Y = P®Y

where Y = (Y},0), Y = (Y}, Y,)
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Random walk methods

@ Random walk matrix: P = D~ 1A

@ Random walk with absorbing states

- 2)- (4 )
Pul Puu Pul Puu

o At the t — oo limit:

im Pt — ( I 0 > B ( / 0)
t—s00 (o PPy P (I = Pyu)™ Py 0O
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Random walk methods

@ Matrix equation

B ((/ - Pulu)lPu/ 8) GI)

7N\
X
——

@ Solution
Y, = Y
’A/u — (I - Puu)_lpulyl

@ (/I — Pyy) is non-singular for all label connected graphs (is always
possible to reach a labeled node from any unlabeled node)
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Label propagation

Algorithm: Label propagation, Zhu et. al 2002
Input: Graph G(V, E), labels Y]

Output: labels Y

Compute D;; = ZJ- Ajj

Compute P = D71A

Initialize Y(©) = (Y},0), t=0

repeat

y(t+1) . p.y(1)

Yl(t+l) — Yl(t)

until Y converges;
Y « y®

Solution: Y = lim;_o Y(®) = (I — Pyu)" 1Py,
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Label spreading

Algorithm: Label spreading, Zhou et. al 2004

Input: Graph G(V,E), labels Y;

Output: labels Y

Compute D;; = EJ- Ajj

Compute S = D~1/2AD~1/2

Initialize Y(©) = (Y},0), t=0

repeat
Y1) « aSY() 4 (1 - )Y@
t—t+1

until Y converges;

Solution: ¥ = (1 — a)(l — aS)~1Y(©
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Regression on graphs

Find labeling Y = (Y}, Y,) that

o Consistent with initial labeling:

S G- i) = 1V = Y|P

eV,
o Consistent with graph structure (regression function smoothness):
1 6 o2 _ OT o _ VTV
5 A -5 =YT(D-AY=YTLY
ijev

@ Stable (additional regularization):

02 112
ey 9=Vl

iev
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Regularization on graphs

Minimization with respect to Y, arg miny, Q(Y)
@ Label propagation [Zhu, 2002]:

Q(Y) = ZAU = YTLY, withfixed V)=V
IJEV
o Label spread [Zhou, 2003]:

" 2
QY) = 1ZA (\yf —}) +uS

iiev iev

QUY)=YTLY +ullY - Y|P
L=1-8=1-D"12AD1/2
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Regularization on graphs

e Laplacian regularization [Belkin, 2003]

jev IEV,
QY)=YTLY Y, — V|2
(Y) = + pl| Y = Y|
@ Use eigenvectors (ej..ep) from smallest eigenvalues of L = D — A:
Lej = )\jej
o Construct classifier (regression function) on eigenvectors
Err(a) = Z Z ajeji)?
i€V, j=1

@ Predict value (classify) 9, = > F_

=1 i, class ¢; = sign(y;)
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Laplacian regularization

Algorithm: Laplacian regularization, Belkin and Niyogy, 2003

Input: Graph G(V/, E), labels Y]

Output: labels Y

Compute D;; = EJ- Ajj

Compute L=D - A

Compute p eigenvectors e;..e, with smallest eigenvalues of L, Le = e
Minimize over aj...ap

arg mina,,a, Yooy (vi — 3.0, 3jei)?, a=(ETE)ETY,

Label v; by the sign(327_; aje;i)
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Label propagation example
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Label propagation example
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Label propagation example
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Label propagation example
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Matrix Factorization: Dimension Reduction

The idea of solving node classification lies in decomposing structural and
context features from graph for efficient node representation.

e Multidimensional scaling (MDS): Approximating MSE over
A — lui — ujl3

@ Indexing by latent semantic analysis (LSI): SVD decomposition of A
adjacency matrix

@ Dimension reduction for A: PCA (principal components analysis),
LDA (linear discriminant analysis), etc.

from Makarov et al., 20211

1 . .
https://peerj.com/articles/cs-357/
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Matrix Factorization: Proximity Matrix

Instead of extracting features from A alone, take into account node
neighbors in the approximation framework.

A Global Geometric Framework for Nonlinear Dimensionality Reduction
(Isomap)

@ Take graph as an input from some metric learning task, for e.g.
@ Compute its k-distance matrix by Floyd-Warshall algorithm.
@ Use dimension reduction to extract meaningful components.

Nonlinear Dimensionality Reduction by Locally Linear Embedding (LLE)
LLEerror(W) = MSE(A — W'U)

where U contains neighbors of points from A. In this way, locally, each
point is presented as linear combinations of neighbor vector
representations.

from Makarov et al., 20212

*https://peerj.com/articles/cs-357/
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Matrix Factorization: Spectral Decomposition

Find eigen-vector decomposition, producing low-dimensional space
representation.
Laplacian Eigenmaps and Spectral Techniques for Embedding and
Clustering (LE)
@ Take graph as an input from some metric learning task, and allow
heat kernels for weights from features F.
@ Solve the equation Lx = ADx, L = D — A is Laplacian
@ X =(x1--x5), X'F get a low dimension representation.
The goal for Laplacian Eigenmaps class of models lies in preserving
first-order similarities giving a larger penalty using graph Laplacian if two
nodes with larger similarity are embedded far apart.
Locality Preserving Projections (LPP)
@ Take graph as an input from some metric learning task, and allow
heat kernels for weights from features F.
@ Solve the equation FLF'x = AFDF'x, L = D — A is Laplacian
@ X =(x1--x,), X'F get a low dimension representation.

I. Makarov & L.E. Zhukov (MADE) Lecture 8 12.04.2021 2428


https://peerj.com/articles/cs-357/

Matrix Factorization: Second-order proximities

Find eigen-vector decomposition, producing low-dimensional space
representation.

Continuous nonlinear dimensionality reduction by kernel eigenmaps
(Kernel Eigenmaps) present a kernel-based mixture of affine maps from
the ambient space to the target space, in which local PCA can be run.
Cauchy Graph Embedding enhance the local topology preserving with
the similarity relationships of the original data.

Structure Preserving Embedding (SPE) aims to use LE combined with
preserving spectral decomposition representing the cluster structure of the
graph. SPE is formulated as a semidefinite program that learns a low-rank
kernel matrix constrained by a set of linear inequalities which captures the
input graph.

Graph Factorization minimize MSE(Aj;, < Z;, Z; >) with L
regularization on ‘'Z’ representations.

from Makarov et al., 20214

*https://peerj.com/articles/cs-357/
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