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Diffusion process

Propagation process:

Viral propagation:
- virus and infection
- rumors, news
- information

Threshold (agent decision) models:
- adoption of innovation
- joining politcal protest
- purchase decision
- cascading failures

Local individual decision rules will lead to very different global results.
”microscopic” changes → ”macroscopic” results
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Diffusion of innovation

Ryan-Gross study of hybrid seed corn delayed adoption - diffusion of
innovation

Information effect vs adopting of innnovation
Ryan and Gross, 1943
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Diffusion of innovaton

Information (awareness) vs adoption (decision) spreading
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Network coordination game

Local interaction game: Let u and v are players, and A and b are possible
strategies
Payoffs

if u and v both adopt behavior A, each get payoff a > 0

if u and v both adopt behavior B, each get payoff b > 0

if u and v adopt opposite behavior, each get payoff 0
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Threshold model

Network coordination game, direct-benefit effect

Node v to make decision A or B, p - portion of type A neighbors
to accept A:

a · p · d > b · (1− p) · d
p ≥ b/(a + b)

Threshold:

q =
b

a + b

Accept new behavior A when p ≥ q
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Cascades

Cascade - sequence of changes of behavior, ”chain reaction”

Let a = 3, b = 2, threshold q = 2/(2 + 3) = 2/5
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Cascade propagation

Let a = 3, b = 2, threshold q = 2/(2 + 3) = 2/5

Start from nodes 7,8: 1/3 < 2/5 < 1/2 < 2/3

Cascade size - number of nodes that changed the behavior

Complete cascade when every node changes the behavior
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Influence response

Two models:

Independent Cascade Model (diminishing returns)

Linear Threshold Model (critical mass)

P(n) = 1− (1− p)n P(b) = δ(b > b0)

Influence response: diminishing returns and threshold
D. Kempe, J. Kleinberg, E. Tardos, 2003
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Independent cascade model

Initial set of active nodes S0

Discrete time steps

On every step an active node v can activate connected neighbor w
with a probability pv ,w (single chance)

If v succeeds, w becomes active on the next time step

Process runs until no more activations possible

If pv ,w = p it is a particular type of SIR model, a node stays infected for
only one step
D. Kempe, J. Kleinberg, E. Tardos, 2003
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Linear threshold model

Influence comes only from NN N(i) nodes, wij influence i → j

Require
∑

j∈N(i) wji ≤ 1

Each node has a random acceptance threshold from θi ∈ [0, 1]

Activation: fraction of active nodes exceeds threshold∑
active j∈N(i)

wji > θi

Initial set of active nodes Ao , iterative process with discrete time steps

Progressive process, only nonactive → active

D. Kempe, J. Kleinberg, E. Tardos, 2003
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Cascades in random networks

multiple seed nodes

(a) Empirical network; (b), (c) - randomized network
P. Singh, 2013
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Influence maximization problem

Initial set of active nodes Ao

Cascade size σ(Ao) - expected number of active nodes when
propagation stops

Find k-set of nodes Ao that produces maximal cascade σ(Ao)

k-set of ”maximum influence” nodes

NP-hard

D. Kempe, J. Kleinberg, E. Tardos, 2003, 2005
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Submodular functions

Set function f is submodular, if for sets S , T and S ⊆ T , ∀v /∈ T

f (S ∪ {v})− f (S) ≥ f (T ∪ {v})− f (T )

Function of diminishing returns (”concave property”)

Function f is monotone, f (S ∪ {v}) ≥ f (S)
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Submodular functions

Theorem

Let F be a monotone submodular function and
let S∗ be the k-element set achieving maximal f .
Let S be a k-element set obtained by repeatedly, for k-iterations, including
an element producing the largest marginal increase in f .

f (S) ≥ (1− 1

e
)f (S∗)

Nemhauser, Wolsey, and Fisher, 1978
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Influence maximization

Cascade size σ(S) is submodular function (D. Kempe, J. Kleinberg,
E. Tardos, 1993)

σ(S) ≥ (1− 1

e
)σ(S∗)

Greedy algorithm for maximum influence set finds a set S such that
its influence set σ(S) is within 1/e = 0.367 from the optimal
(maximal) set σ(S∗), σ(S) ≥ 0.629σ(S∗)
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Influence maximization

Approximation algorithm

Algorithm: Greedy optimization

Input: Graph G (V ,E ), k

Output: Maxumum influence set S

Set S ← 0

for i = 1 : k do
select v = arg maxu∈V \S(σ(S ∪ {u})− σ(S))

S ← S ∪ {v}
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Experimental results

Independent cascade model Linear threshold model

network: collaboration graph 10,000 nodes, 53,000 edges

D. Kempe, J. Kleinberg, E. Tardos, 2003
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Computational considerations

Independent cascade model: influence spread and running time

W. Chen et.al, 2009
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Agent Based Modeling (ABM)

An agent-based model (ABM) is a class of computational models for
simulating the actions and interactions of autonomous agents

Agent-based models consist of dynamically interacting rule-based
agents.

Simple agent behaviors (rules) generate complex system behaviors

Real world system becoming very complex and interdependent

Decentralization of decision making, deregulations.

Available data and computational power for micro simulations
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What is an agent?

Agents are autonomous decision-making units with diverse charactristics

A discrete entity with its own goals and behavior

Autonomous, capable to adapt and modify behavioir

Decisions made independently by each engine

Agents can be homogeneous or diverse and heterogeneous

Can have memory and internal models

Examples: people, groups, organizations, systems of robots etc
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Agent based simulations

Agent based model consists of a set of user defined agents, a set of
agent relationships and environment

No central controller or authority exists for the system

Independent move and interaction by any agent

Local interaction among agents

Various topologies connect agents with their neighbors (fee space,
grid, network, GIS)

Optimization can be done for the system globally
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When use agent based modeling?

When there is a natural representation as agents

– When there are decision and behaviors that can be defined discretely
(with boundaries)

– When it is important that agents adapt and change their behavior
– When it is important that agents learn and engage in dynamic strategic

behavior
– When it is important that agents have a dynamic relationships with

other agents, and agent relationships form and dissolve
– When it is important that agents have a spatial component to their

behaviors and interactions

When the past is no predictor of the future

When scale-up to arbitrary levels is important

When process structural change needs to be a result of the model,
rather than an input to the model
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Spatial model of segregation

”Dynamic Models of Segregation”, Thomas Schelling, 1971

Micro-motives and macro-behavior

Personal preferences lead to collective actions

Global patterns of spatial segregation from homophily at a local level

Segregated race, ethnicity, native language, income

Cities are strongly racially segregated. Are people that racists?

Agent based modeling: agents, rules (dynamics), aggregation
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Segregation

Integrated pattern Segregated pattern
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Racial segregation

New York Washington Chicago

Seattle Los Angeles Miami
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2012 US Presidential Elections Map
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Schelling’s model of segregation

Population consists of 2 types of agents

Agent reside in the cells of the grid (2-dimensional geography of a
city), 8 neighbors

Some cells contain agents, some unpopulated

Every agent wants to have at least some fraction of agents
(threshold) of his type as neighbor (satisfied agent)

On every round every unsatisfied agent moves to a satisfactory empty
cell.

Continues until everyone is satisfied or can’t move
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Spatial segregation

satisfied agent unsatisfied agent

preference threshold λ = 3/7
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Model

N - nodes, θ - fraction of occupied by A and B

nA + nB = θ · N

Proportion of ”unlike” nearest neighbors, ki = #NN

Pi =

{
#nB/ki , if i ∈ A
#nA/ki , if i ∈ B

Utility function, λ - sensitivity (tolerance threshold) level

ui =

{
1, if Pi ≤ λ
0, if Pi > λ

Every node moves to maximize its utility
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Spatial segregation

vacancy 5%, tolerance λ = 0.5

L. Gauvin et.al. 2009
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Spatial segregation

L. Gauvin et.al. 2009
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Algorithm

time steps 1..T

At every time step randomly select an agent, compute utility

If utility is u = 0 move to an empty location to maximize utility

Movements: 1) random location 2) nearest available location

Repeat until either all utilities are maximized
∑

i ui = θN
or reaches ”frozen” state, no place to move, then

∑
i ui < θN

Total utility of society

U =
∑
i

ui
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Measuring segregation

Schilling’s solid mixing index

M =
1

nA + nB

∑
i

Pi

Freeman’s segregation index

F = 1− e∗

E (e∗)

e∗ = eAB
(eAB+eAA+eBB)

- observed proportion of between group ties,

E (e∗) = 2nAnB
(nA+nB)(nA+nB−1) - expected proportion for random ties

Assortative mixing

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(ci , cj)

I. Makarov & L.E. Zhukov (MADE) Lecture 7 05.04.2021 36 / 42



Spatial segregation on networks
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Spatial segregation on networks

Fixed degree k = 10 neighboring graphs: regular, random, scale-free,
fractal

Arnaud Banos, 2010
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Spatial segregation on networks

λ = 0.5, θ = 0.8

Banos, 2010
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Summary

Spatial segregation is taking place even though no individual agent is
actively seeking it (minor preferences, high tolerance)

Network structure does affect segregation

Fixed characteristics (race) can become correlated with mutable
(location)
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