Network structure

I. Makarov \& L.E. Zhukov

BigData Academy MADE from Mail.ru Group

Social Network Analysis and Machine Learning on Graphs

Network structure

Typical network structure

Core-periphery structure of a network

image from J. Leskovec, K. Lang, 2010

Graph cores

Definition

A k-core is the largest subgraph such that each vertex is connected to at least k others in subset

Every vertex in k-core has a degree $k_{i} \geq k$ $(k+1)$-core is always subgraph of k-core
The core number of a vertex is the highest order of a core that contains this vertex

k-core decomposition

V. Batageli, M. Zaversnik, 2002

- If from a given graph $G=(\mathrm{V}, \mathrm{E})$ recursively delete all vertices, and lines incident with them, of degree less than k, the remaining graph is the k -core.

K-cores

Zachary karate club: 1,2,3,4 - cores

k-cores

Graph cliques

Definition

A clique is a complete (fully connected) subgraph, i.e. a set of vertices where each pair of vertices is connected.

Cliques can overlap

Graph cliques

- A maximal clique is a clique that cannot be extended by including one more adjacent vertex (not included in larger one)
- A maximum clique is a clique of the largest possible size in a given graph

- Graph clique number is the size of the maximum clique

image from D. Eppstein

Graph cliques

Maximum cliques

Maximal cliques:
Clique size:
$\begin{array}{llll}2 & 3 & 4 & 5\end{array}$

Number of cliques: $\begin{array}{llll}11 & 21 & 2 & 2\end{array}$

Graph cliques

Computational issues:

- Finding click of fixed given size $k-O\left(n^{k} k^{2}\right)$
- Finding maximum clique $O\left(3^{n / 3}\right)$
- But in sparse graphs...

Network communities

Definition

Network communities are groups of vertices such that vertices inside the group connected with many more edges than between groups.

- Community detection is an assignment of vertices to communities.
- Will consider non-overlapping communities
- Graph partitioning problem

Network communities

What makes a community (cohesive subgroup):

- Mutuality of ties. Almost everyone in the group has ties (edges) to one another
- Compactness. Closeness or reachability of group members in small number of steps, not necessarily adjacency
- Density of edges. High frequency of ties within the group
- Separation. Higher frequency of ties among group members compared to non-members

Community density

- Graph $G(V, E), n=|V|, m=|E|$
- Community - set of nodes S n_{s}-number of nodes in S, m_{s} - number of edges in S
- Graph density

$$
\rho=\frac{m}{n(n-1) / 2}
$$

- community internal density

$$
\delta_{i n t}=\frac{m_{s}}{n_{s}\left(n_{s}-1\right) / 2}
$$

- external edges density

$$
\delta_{e x t}=\frac{m_{e x t}}{n_{s}\left(n-n_{s}\right)}
$$

- community (cluster): $\delta_{\text {int }}>\rho, \delta_{\text {ext }}<\rho$

Modularity

- Compare fraction of edges within the cluster to expected fraction in random graph with identical degree sequence

$$
Q=\frac{1}{4}\left(m_{s}-E\left(m_{s}\right)\right)
$$

- Modularity score

$$
Q=\frac{1}{2 m} \sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \delta\left(c_{i}, c_{j}\right),=\sum_{u}\left(\frac{m_{u}}{m}-\left(\frac{k_{u}}{2 m}\right)^{2}\right)
$$

m_{u} - number of internal edges in a community u, k_{u} - sum of node degrees within a community

- Modularity score range $Q \in[-1 / 2,1)$, single community $Q=0$

Modularity

SUBOPTIMAL PARTITION

- The higher the modularity score - the better are communities

from A.L. Barabasi 2016

Heuristic approach

Focus on edges that connect communities. Edge betweenness -number of shortest paths $\sigma_{s t}(e)$ going through edge e

$$
C_{B}(e)=\sum_{s \neq t} \frac{\sigma_{s t}(e)}{\sigma_{s t}}
$$

Construct communities by progressively removing edges

Edge betweenness

Newman-Girvan, 2004
Algorithm: Edge Betweenness
Input: graph G(V,E)
Output: Dendrogram

repeat

For all $e \in E$ compute edge betweenness $C_{B}(e)$;
remove edge e_{i} with largest $C_{B}\left(e_{i}\right)$;
until edges left;
If bi-partition, then stop when graph splits in two components (check for connectedness)

Edge betweenness

Hierarchical algorithm, dendrogram

Edge betweenness

Zachary karate club

Edge betweenness

Zachary karate club

Edge betweenness

Zachary karate club

Edge betweenness

Edge betweenness

best: clusters $=6$, modularity $=0.345$

Edge betweenness

Zachary karate club

Lecture outline

(1) Network cores
(2) Cliques
(3) Network communities
4) Graph paritioning
(5) Spectral optimization

- Min cut
- Normalized cut
- Modularity maximization
(6) Multilevel spectral
(7) Overlapping commmunities
(8) Multi-level optimization
(9) Random walk methods

Network communities

Definition

Network communities are groups of vertices such that vertices inside the group connected with many more edges than between groups.

- Graph partitioning problem

Graph partitioning

Combinatorial problem:

- Number of ways to divide network of n nodes in 2 groups (bi-partition):

$$
\frac{n!}{n_{1}!n_{2}!}, \quad n=n_{1}+n_{2}
$$

- Dividing into k non-empty groups (Stirling numbers of the second kind)

$$
S(n, k)=\frac{1}{k!} \sum_{j=0}^{n}(-1)^{j} C_{k}^{j}(k-j)^{n}
$$

- Number of all possible partitions (n-th Bell number):

$$
B_{n}=\sum_{k=1}^{n} S(n, k)
$$

$B_{20}=5,832,742,205,057$

Community detection

- Consider only sparse graphs $m \ll n^{2}$
- Each community should be connected
- Combinatorial optimization problem:
- optimization criterion
- optimization method
- Exact solution NP-hard (bi-partition: $n=n_{1}+n_{2}, \quad n!/\left(n_{1}!n_{2}!\right)$ combinations)
- Solved by greedy, approximate algorithms or heuristics
- Recursive top-down 2-way partition, multiway partiton
- Balanced class partition vs communities

Graph cut

Optimization criterion: graph cut

Graph $G(E, V)$ partition: $V=V_{1}+V_{2}$

- Graph cut

$$
Q=\operatorname{cut}\left(V_{1}, V_{2}\right)=\sum_{i \in V_{1}, j \in V_{2}} e_{i j}
$$

- Ratio cut:

$$
Q=\frac{\operatorname{cut}\left(V_{1}, V_{2}\right)}{\left\|V_{1}\right\|}+\frac{\operatorname{cut}\left(V_{1}, V_{2}\right)}{\left\|V_{2}\right\|}
$$

- Normalized cut:

$$
Q=\frac{\operatorname{cut}\left(V_{1}, V_{2}\right)}{\operatorname{Vol}\left(V_{1}\right)}+\frac{\operatorname{cut}\left(V_{1}, V_{2}\right)}{\operatorname{Vol}\left(V_{2}\right)}
$$

- Quotient cut (conductance):

$$
Q=\frac{\operatorname{cut}\left(V_{1}, V_{2}\right)}{\min \left(\operatorname{Vol}\left(V_{1}\right), \operatorname{Vol}\left(V_{2}\right)\right)}
$$

where: $\operatorname{Vol}\left(V_{1}\right)=\sum_{i \in V_{1}, j \in V} e_{i j}=\sum_{i \in V_{1}} k_{i}$

Optimization methods

- Greedy optimization:
- Local search [Kernighan and Lin, 1970], [Fidducia and Mettheyses, 1982]
- Approximate optimization:
- Spectral graph partitioning [M. Fiedler, 1972], [Pothen et al 1990], [Shi and Malik, 2000]
- Multicommodity flow [Leighton and Rao, 1988]
- Heuristics algorithms:
- Multilevel graph partitioning (METIS) [G. Karypis, Kumar 1998]
- Randomized algorithms:
-Randomized min cut [D. Karger, 1993]

Graph cuts

- Let $V=V^{+}+V^{-}$be partitioning of the nodes
- Let $\mathrm{s}=\{+1,-1,+1, \ldots-1,+1\}^{T}$ - indicator vector

$$
s(i)=\left\{\begin{array}{lll}
+1: & \text { if } & v(i) \in V^{+} \\
-1: & \text { if } & v(i) \in V^{-}
\end{array}\right.
$$

- Number of edges, connecting V^{+}and V^{-}

$$
\begin{gathered}
\operatorname{cut}\left(V^{+}, V^{-}\right)=\frac{1}{4} \sum_{e(i, j)}(s(i)-s(j))^{2}=\frac{1}{8} \sum_{i, j} A_{i j}(s(i)-s(j))^{2}= \\
=\frac{1}{4} \sum_{i, j}\left(k_{i} \delta_{i j} s(i)^{2}-A_{i j} s(i) s(j)\right)=\frac{1}{4} \sum_{i, j}\left(k_{i} \delta_{i j}-A_{i j}\right) s(i) s(j) \\
\operatorname{cut}\left(V^{+}, V^{-}\right)=\frac{1}{4} \sum_{i, j}\left(D_{i j}-A_{i j}\right) s(i) s(j)
\end{gathered}
$$

Graph cuts

- Graph Laplacian: $\mathrm{L}_{i j}=\mathrm{D}_{i j}-\mathrm{A}_{i j}$, where $\mathrm{D}_{i i}=\operatorname{diag}\left(k_{i}\right)$

$$
\mathrm{L}_{i j}=\left\{\begin{array}{rr}
k(i), & \text { if } i=j \\
-1, & \text { if } \exists e(i, j) \\
0, & \text { otherwise }
\end{array}\right.
$$

- Laplacian matrix 5×5 :

$$
\mathrm{L}=\left(\begin{array}{ccccc}
1 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & -1 & 2 & -1 \\
& & & -1 & 1
\end{array}\right)
$$

Graph cuts

- Graph Laplacian: $\mathrm{L}=\mathrm{D}-\mathrm{A}$
- Graph cut:

$$
Q(\mathrm{~s})=\operatorname{cut}\left(V^{+}, V^{-}\right)=\frac{1}{4} \sum_{i, j} L_{i j} s(i) s(j)=\frac{s^{T} \mathrm{Ls}}{4}
$$

- Minimal cut:

$$
\min _{s} Q(\mathrm{~s})
$$

- Balanced cut constraint:

$$
\sum_{i} s(i)=0
$$

- Integer minimization problem, exact solution is NP-hard!

Spectral method - relaxation

- Discrete problem \rightarrow continuous problem
- Discrete problem: find

$$
\min _{\mathrm{s}}\left(\frac{1}{4} \mathrm{~s}^{T} \mathrm{Ls}\right)
$$

under constraints: $s(i)= \pm 1, \sum_{i} s(i)=0$;

- Relaxation - continuous problem: find

$$
\min _{x}\left(\frac{1}{4} x^{T} L x\right)
$$

under constraints: $\sum_{i} x(i)^{2}=n, \sum_{i} x(i)=0$

- Given $x(i)$, round them up by $s(i)=\operatorname{sign}(x(i))$
- Exact constraint satisfies relaxed equation, but not other way around!

Spectral method - computations

- Constraint optimization problem (Lagrange multipliers):

$$
Q(x)=\frac{1}{4} x^{T} L x-\lambda\left(x^{T} x-n\right), x^{T} e=0
$$

- Eigenvalue problem:

$$
\mathrm{Lx}=\lambda \mathrm{x}, \quad \mathrm{x} \perp \mathrm{e}
$$

- Solution:

$$
Q\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{n}{4} \lambda_{i}
$$

- First (smallest) eigenvector:

$$
\mathrm{Le}=0, \quad \lambda=0, \quad \mathrm{x}_{1}=\mathrm{e}
$$

- Looking for the second smallest eigenvalue/eigenvector λ_{2} and x_{2}
- Minimization of Rayleigh-Ritz quotient:

$$
\min _{x \perp x_{1}}\left(\frac{x^{T} L x}{x^{T} x}\right)
$$

Spectral graph theory

- $\lambda_{1}=0$
- Number of $\lambda_{i}=0$ equal to the number of connected components
- $0 \leq \lambda_{2} \leq 2$
$\lambda_{2}=0$, disconnected graph
$\lambda_{2}=1$, totally connected
- Graph diameter (longest shortest path)

$$
D(G)>=\frac{4}{n \lambda_{2}}
$$

Spectral graph partitioning algorithm

Algorithm: Spectral graph partitioning - normalized cuts
Input: adjacency matrix A
Output: class indicator vector s
compute $\mathrm{D}=\operatorname{diag}(\operatorname{deg}(\mathrm{A}))$;
compute $\mathrm{L}=\mathrm{D}-\mathrm{A}$;
solve for second smallest eigenvector:
min cut: $L x=\lambda x$;
normalized cut : $\mathrm{Lx}=\lambda \mathrm{Dx}$;
set $\mathrm{s}=\operatorname{sign}\left(\mathrm{x}_{2}\right)$

Example

Example

Eigenvalues: $\lambda_{1}=0, \lambda_{2}=0.2, \lambda_{3}=0.25 \ldots$

Example

Example

Spectral ordering

Cut metrics

Graph cut metrics

Optimization criterion: modularity

- Modularity:

$$
Q=\frac{1}{2 m} \sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \delta\left(c_{i}, c_{j}\right)
$$

where n_{c} - number of classes and

$$
\delta\left(c_{i}, c_{j}\right)=\left\{\begin{array}{lll}
1: & \text { if } & c_{i}=c_{j} \\
0: & \text { if } & c_{i} \neq c_{j}
\end{array}\right. \text { - kronecker delta }
$$

[Maximization!]

Spectral modularity maximization

- Direct modularity maximization for bi-partitioning, [Newman, 2006]
- Let two classes $c_{1}=V^{+}, c_{2}=V^{-}$, indicator variable $s= \pm 1$

$$
\delta\left(c_{i}, c_{j}\right)=\frac{1}{2}\left(s_{i} s_{j}+1\right)
$$

- Modularity

$$
Q=\frac{1}{4 m} \sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right)\left(s_{i} s_{j}+1\right)=\frac{1}{4 m} \sum_{i, j} B_{i j} s_{i} s_{j}
$$

where

$$
B_{i j}=A_{i j}-\frac{k_{i} k_{j}}{2 m}
$$

M. Newman, 2006

Spectral modularity maximization

- Qudratic form:

$$
Q(\mathrm{~s})=\frac{1}{4 m} \mathrm{~s}^{T} \mathrm{Bs}
$$

- Integer optimization - NP, relaxation $s \rightarrow x, x \in R$
- Keep norm $\|x\|^{2}=\sum_{i} x_{i}^{2}=x^{T} x=n$
- Quadratic optimization

$$
Q(\mathrm{x})=\frac{1}{4 m} \mathrm{x}^{T} \mathrm{Bx}-\lambda\left(\mathrm{x}^{T} \mathrm{x}-n\right)
$$

- Eigenvector problem

$$
B x_{i}=\lambda_{i} x_{i}
$$

- Approximate modularity

$$
Q\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{n}{4 m} \lambda_{i}
$$

- Modularity maximization - largest $\lambda=\lambda_{\text {max }}$

Modularity maximization

Algorithm: Spectral modularity maximization: two-way partition Input: adjacency matrix A
Output: class indicator vector s
compute $\mathrm{k}=\operatorname{deg}(\mathrm{A})$;
compute $\mathrm{B}=\mathrm{A}-\frac{1}{2 m} \mathrm{kk}^{T}$;
solve for maximal eigenvector $B x=\lambda x$;
set $\mathrm{s}=\operatorname{sign}\left(\mathrm{x}_{\max }\right)$

Example

Example

Example

Multilevel spectral

Multilevel spectral

Lecture outline

(1) Network cores
(2) Cliques
(3) Network communities
4) Graph paritioning
(5) Spectral optimization

- Min cut
- Normalized cut
- Modularity maximization
(6) Multilevel spectral
(7) Overlapping commmunities
(8) Multi-level optimization
(9) Random walk methods

Community detection

(a)

(b)

Overlapping communities

Palla, 2005

Overlapping communities

Palla, 2005

k-clique community

- k-clique is a clique (complete subgraph) with k nodes
- k-clique community a union of all k-cliques that can be reached from each other through a series of adjacent k-cliques
- two k-cliques are said to be adjacent if they share $k-1$ nodes.

Adjacent 4-cliques

k-clique percolation

- Find all maximal cliques
- Create clique overlap matrix
- Threshold matrix at value $k-1$
- Communities $=$ connected components

k-clique percolation

Palla, 2005

k-clique percolation

Palla, 2005

Fast community unfolding

Multi-resolution scalable method

2 mln mobile phone network
V. Blondel et.al., 2008

Fast community unfolding

"The Louvain method"

- Heuristic method for greedy modularity optimization
- Find partitions with high modularity
- Multi-level (multi-resolution) hierarchical scheme
- Scalable

Modularity:

$$
Q=\frac{1}{2 m} \sum_{i, j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \delta\left(c_{i}, c_{j}\right)
$$

V. Blondel et.al., 2008

Fast community unfolding

Algorithm

- Assign every node to its own community
- Phase I
- For every node evaluate modularity gain from removing node from its community and placing it in the community of its neighbor
- Place node in the community maximizing modularity gain
- repeat until no more improvement (local max of modularity)
- Phase II
- Nodes from communities merged into "super nodes"
- Weight on the links added up
- Repeat until no more changes (max modularity)
V. Blondel et.al., 2008

Fast community unfolding

V. Blondel et.al., 2008

Fast community unfolding

V. Blondel et.al., 2008

Communities and random walks

- Random walks on a graph tend to get trapped into densely connected parts corresponding to communities.

Walktrap community

Walktrap

- Consider random walk on graph
- At each time step walk moves to NN uniformly at random $P_{i j}=\frac{A_{i j}}{d(i)}$,

$$
P=D^{-1} A, D_{i i}=\operatorname{diag}(d(i))
$$

- $P_{i j}^{t}$ - probability to get from i to j in t steps, $t \ll t_{\text {mixing }}$
- Assumptions: for two i and j in the same community $P_{i j}^{t}$ is high
- if i and j are in the same community, then $\forall k, P_{i k}^{t} \approx P_{j k}^{t}$
- Distance between nodes:

$$
r_{i j}(t)=\sqrt{\sum_{k=1}^{n} \frac{\left(P_{i k}^{t}-P_{j k}^{t}\right)^{2}}{d(k)}}=\left\|D^{-1 / 2} P_{i}^{t}-D^{-1 / 2} P_{j}^{t}\right\|
$$

Walktrap

Computing node distance $r_{i j}$

- Direct (exact) computation: $P_{i j}^{t}=\left(P^{t}\right)_{i j}$ or $P_{i}^{t}=P^{t} p_{i}^{0}, p_{i}^{0}(k)=\delta_{i k}$
- Approximate computation (simulation):
- Compute K random walks of length t starting form node i
- Approximate $P_{i k}^{t} \approx \frac{N_{i k}}{K}$, number of walks end up on k

Distance between communities:

$$
\begin{gathered}
P_{C j}^{t}=\frac{1}{|C|} \sum_{i \in C} P_{i j}^{t} \\
r_{C_{1} C_{2}}(t)=\sqrt{\sum_{k=1}^{n} \frac{\left(P_{C_{1} k}^{t}-P_{C_{2} k}^{t}\right)^{2}}{d(k)}}=\left\|D^{-1 / 2} P_{C_{1}}^{t}-D^{-1 / 2} P_{C_{2}}^{t}\right\|
\end{gathered}
$$

P. Pons and M. Latapy, 2006

Walktrap

Algorithm (hierarchical clustering)

- Assign each vertex to its own community $S_{1}=\{\{v\}, v \in V\}$
- Compute distance between all adjacent communities $r_{C_{i} C_{j}}$
- Choose two "closest" communities that minimizes (Ward's methods):

$$
\Delta \sigma\left(C_{1}, C_{2}\right)=\frac{1}{n}\left(\sum_{i \in C_{3}} r_{i C_{3}}^{2}-\sum_{i \in C_{1}} r_{i C_{1}}^{2}-\sum_{i \in C_{2}} r_{i C_{2}}^{2}\right)
$$

and merge them $S_{k+1}=\left(S_{k} \backslash\left\{C_{1}, C_{2}\right\}\right) \cup C_{3}, C_{3}=C_{1} \cup C_{2}$

- update distance between communities

After $n-1$ steps finish with one community $S_{n}=\{V\}$

Walktrap

P. Pons and M. Latapy, 2006

Community detection algorithms

Author	Ref.	Label	Order
Eckmann \& Moses	(Eckmann and M	EM	$O\left(m\left\langle k^{2}\right)\right)$
Zhou \& Lipowsky	(Zhou and Lipowsky, 2004)	2 L	$O\left(n^{3}\right)$
Latapy \& Pons	(Latapy and Pons, 2005)	LP	$O\left(n^{3}\right)$
Clauset et al.	(Clauset et al., 2004)	NF	$O\left(n \log ^{2} n\right)$
Newman \& Girvan	(Newman and Girvan, 2004)	NG	$O\left(\mathrm{~nm}^{2}\right)$
Girvan \& Newman	(Girvan and Newman, 2002)	GN	$O\left(n^{2} m\right)$
Guimerà et al.	(Guimerà and Amaral, 2005; Guimerà et al. 2004)	SA	meter dependent
Duch \& Arenas	2005)	DA	$O\left(n^{2} \log n\right)$
Fortunato et al.	(Fortunato et aL, 2004)	FLM	$O\left(m^{3} n\right)$
Radicchi et al.	(Radicchi et at., 2004)	RCCLP	$O\left(m^{4} / n^{2}\right)$
Donetti \& Munioz	(Donetti and Muñoz, 2004, 2005)	DM/DMN	$O\left(n^{3}\right)$
Bagrow \& Bollt	(Bagrow and Bollt, 2005)	BB	$O\left(n^{3}\right)$
Capocel et al.	(Capocci et al., 2005)	CSCC	$O\left(n^{2}\right)$
Wu \& Huberman	(Wu and Huberman, 2004)	WH	$O(n+m)$
Palla et al.	(Palla et at., 2005)	PK	$O(\exp (n))$
Reichardt \& Bornholdt	(Reichardt and Bornholdt, 2004)	RB	parameter dependent

Author	Ref.	La	Order
Girvan \& Newman Clauset et al. Biondel et al. Guimerh et al. Radicchil et al. Palla et al. Van Doagen Rosvall \& Bergstrom Roavall \& Bergotrom Donetti \& Mufioz Newman \& Leicht Ronbovde \& Nusslnov	(Girvan and Newrnan, 2002; Newman and Girvan, 2004) (Clauset et al., 2004) (Blondel et ai., 2008) (Guimers̀ and Amaral, 2005; Guimerd et ol., 2004) (Radicchl et al., 2004) (Palla of al. 2005) (Dungen, 2000s) (Rasvall and Bergstrom, 2007) (Rosvall and Eergstrom, 2008) (Donetti and Mutioz, 2004, 2005) (Newman and Leicht, 2007) (Ronhowde and Nussinov, 2009)	CN Clauset et al. Blondel et al. Sim. Ann. Radlochl es al. Clinder MCL Informod Infomap DM EM RN	$O\left(n m^{2}\right)$ $O\left(n \log ^{2} n\right)$ $O(m)$ perameter dependent $O\left(m^{4} / n^{2}\right)$ $O(\exp (n))$ $O\left(n k^{2}\right), k<n$ parameser parameser dependent $O(m)$ $O\left(n^{3}\right)$ paramoter dependent $O\left(m^{3} \log n\right), \beta \sim 1.3$

Summary

Lectures 1-5 Descriptive Network Analysis

- Network characteristics:
- Power law node degree distribution
- Small diameter
- High clustering coefficient (transitivity)
- Network models:
- Random graphs
- Preferential attachment
- Small world
- Centrality measures:
- Degree centrality
- Closeness centrality
- Betweenness centrality
- Link analysis:
- Page rank
- HITS

Summary

Lectures 1-5 Descriptive Network Analysis

- Structural equivalence
- Vertex equivalence
- Vertex similarity
- Assortative mixing
- Assortative and disassortative networks
- Mixing by node degree
- Modularity
- Network structures:
- Cliques
- k-cores
- Network communities:
- Graph partitioning
- Overlapping communities
- Heuristic methods
- Random walk based methods

References

- Finding and evaluating community structure in networks, M.E.J. Newman, M. Girvan, Phys. Rev E, 69, 2004
- Modularity and community structure in networks, M.E.J. Newman, PNAS, vol 103, no 26, pp 8577-8582, 2006
- S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27-64, 2007.
- S. Fortunato. Community detection in graphs, Physics Reports, Vol. 486, Iss. 3-5, pp 75-174, 2010

References

- M. Fiedler. Algebraic connectivity of graphs, Czech. Math. J, 23, pp 298-305, 1973
- A. Pothen, H. Simon and K. Liou. Partitioning sparse matrices with eigenvectors of graphs, SIAM Journal of Matrix Analysis, 11, pp 430-452, 1990
- Bruce Hendrickson and Robert Leland. A Multilevel Algorithm for Partitioning Graphs, Sandia National Laboratories, 1995
- Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, N 8, pp 888-905, 2000
- M.E.J. Newman. Modularity and community structure in networks. PNAS Vol. 103, N 23, pp 8577-8582, 2006
- B. Good, Y.-A. de Montjoye, A. Clauset. Performance of modularity maximization in practical contexts, Physical Review E 81, 046106, 2010

References

- G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature 435 (2005) 814?818.
- P. Pons and M. Latapy, Computing communities in large networks using random walks, Journal of Graph Algorithms and Applications, 10 (2006), 191-218.
- V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech. P10008 (2008).
- J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney. Statistical properties of community structure in large social and information networks. In WWW 08: Procs. of the 17th Int. Conf. on World Wide Web, pages 695-704, 2008.

References

- M.A Porter, J-P Onella, P.J. Mucha. Communities in Networks, Notices of the American Mathematical Society, Vol. 56, No. 9, 2009
- S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1), pp 27-64, 2007.
- S. Fortunato. Community detection in graphs, Physics Reports, Vol. 486, Iss. 3-5, pp 75-174, 2010

