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Graph theory

Graph G (E ,V ), |V | = n, |E | = m
Adjacency matrix An×n, Aij , edge i → j

Graph is directed, matrix is non-symmetric: AT 6= A, Aij 6= Aji
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Graph theory

sinks: zero out degree nodes, kout(i) = 0, absorbing nodes

sources: zero in degree nodes, kin(i) = 0
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Graph theory

Graph is strongly connected if every vertex is reachable form every
other vertex.

Strongly connected components are partitions of the graph into
subgraphs that are strongly connected

In strongly connected graphs there is a path is each direction between
any two pairs of vertices

image from Wikipedia
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Graph theory

A directed graph is aperiodic if the greatest common divisor of the
lengths of its cycles is one (there is no integer k >1 that divides the
length of every cycle of the graph)

image from Wikipedia
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Web as a graph

Hyperlinks - implicit endorsements

Web graph - graph of endorsements (sometimes reciprocal)
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Random walk

Random walk on a directed
graph:

pt+1
i =

∑
j∈N(i)

ptj
dout
j

=
∑
j

Aji

dout
j

pj

Dii = diag{dout
i }

pt+1 = (D−1A)Tpt

P = D−1A

Power iterations

pt+1 ← PTpt

a)

b)
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PageRank

”PageRank can be thought of as a model of user behavior. We assume there is a
”random surfer” who is given a web page at random and keeps clicking on links,
never hitting ”back” but eventually gets bored and starts on another random
page. The probability that the random surfer visits a page is its PageRank.”

Sergey Brin and Larry Page, 1998
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PageRank formulation

Power iterations:

p← αPTp + (1− α)
e

n
, α - teleportation coefficient

Sparse linear system:

(I− αPT )p = (1− α)
e

n

Eigenvalue problem (λ = 1):(
αPT + (1− α)E

)
p = λp

P = D−1A
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Perron-Frobenius Theorem

Perron-Frobenius theorem (Fundamental Theorem of Markov Chains)
If matrix is

stochastic (non-negative and rows sum up to one, describes Markov
chain)

irreducible (strongly connected graph)

aperiodic

then
∃ lim
t→∞

p̄t = π̄

and can be found as a left eigenvector

π̄P = λπ̄, where ||π̄||1 = 1, λ = 1

π̄ - stationary distribution of Markov chain, row vector
Oscar Perron, 1907, Georg Frobenius,1912.
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PageRank variations

Power iterations

p← αPTp + (1− α)v, v - teleportation vector

P′ = αP + (1− α)evT

p← P′
T

p, ||p|| = 1

Topic specific PageRank

v - set of pages on specific topics

TrustRank
v - set of trusted pages

Personalized PageRank

v - set of personal preference pages
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PageRank
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PageRank beyond the Web
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Hubs and Authorities (HITS)

Citation networks. Reviews vs original research (authoritative) papers

authorities, contain useful information, ai
hubs, contains links to authorities, hi

Mutual recursion

Good authorities reffered by
good hubs

ai ←
∑
j

Ajihj

Good hubs point to good
authorities

hi ←
∑
j

Aijaj

Jon Kleinberg, 1999
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HITS

System of linear equations

a = αATh

h = βAa

Symmetric eigenvalue problem

(ATA)a = λa

(AAT )h = λh

where eigenvalue λ = (αβ)−1
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Hubs and Authorities

Hubs Authorities
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Patterns of relations

Global, statistical properties of the networks:
- average node degree (degree distribution)
- average clustering
- average path length

Local, per vertex properties:
- node centrality
- page rank

Pairwise properties:
- node equivalence
- node similarity
- correlation between pairs of vertices (node values)
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Structural equivalence

Definition

Structural equivalence: two vertices are structurally equivalent if their
respective sets of in-neighbors and out-neighbors are the same

u1 u2 v1 v2 w

u1 0 0 1 1 0

u2 0 0 1 1 0

v1 0 0 0 1 1

v2 0 0 1 0 1

w 0 0 0 0 0

rows and columns of adjacency matrix of structurally equivalent nodes are
identical, ”connect to the same neighbors”
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Structural equivalence

In order for adjacent vertices to be structurally equivalent, they
should have self loops.

Sometimes called ”strong structural equivalence”

Sometimes relax requirements for self loops for adjacent nodes
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Structural similarity

Definition

Two nodes are similar to each other if they share many neighbors.
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Similarity measures

Jaccard similarity

J(vi , vj) =
|N (vi ) ∩N (vj)|
|N (vi ) ∪N (vj)|

Cosine similarity (vectors in n-dim space)

σ(vi , vj) = cos(θij) =
vTi vj
|vi ||vj |

=

∑
k AikAkj√∑
A2
ik

√∑
A2
jk

Pearson correlation coefficient:

rij =

∑
k(Aik − 〈Ai 〉)(Ajk − 〈Aj〉)√∑

k(Aik − 〈Ai 〉)2
√∑

k(Ajk − 〈Aj〉)2
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Similarity measures

Unweighted undirected graph Aik = Aki , binary matrix, only 0 and 1∑
k Aik =

∑
k A

2
ik = ki - node degree∑

k AikAkj = (A2)ij = nij - number of shared neighbors

Cosine similarity (vectors in n-dim space)

σ(vi , vj) = cos(θij) =
nij√
kikj

Pearson correlation coefficient:

rij =
nij −

kikj
n√

ki −
k2
i
n

√
kj −

k2
j

n
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Similarity matrix

Graph Node similarity matrix
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Regular equivalence

Definition

Two vertices are regularly equivalent if they are equally related to
equivalent others.

Quantitative measure - similarity score σij (recursive definition):

σij = α
∑
k,l

AikAjlσkl

should have high σii - self similarity

σij = α
∑
k,l

AikAjlσkl + δij
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Regular similarity

A vertex j is similar to vertex i (dashed line) if i has a network
neighbor v (solid line) that is itself similar to j

σij = α
∑
v

Aivσvj + δij

σσσ = αAσ + I

Closed form solution:
σσσ = (I− αA)−1

Leicht, Holme, and Newman, 2006
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SimRank

G - directed graph

Two vertices are similar if they are referenced by similar vertices

s(a, b) - similarity between a and b, I () - set of in-neighbours

s(a, b) =
C

|I (a)||I (b)|

I (a)∑
i=1

I (b)∑
j=1

s(Ii (a), Ij(b)), a 6= b

s(a, a) = 1

Matrix notation:

Sij =
C

kikj

∑
k,m

AkiAmjSkm

Iterative solution starting from s0(i , j) = δij
Jeh and Widom, 2002
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Mixing patterns

Network mixing patterns

Assortative mixing, ”like links with like”, attributed of connected
nodes tend to be more similar than if there were no such edge

Disassortative mixing, ”like links with dislike”, attributed of
connected nodes tend to be less similar than if there were no such
edge

Vertices can mix on any vertex attributes (age, sex, geography in social
networks), unobserved attributes, vertex degrees

Examples:
assortative mixing - in social networks political beliefs, obesity, race
disassortative mixing - dating network, food web (predator/prey),
economic networks (producers/consumers)
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Assortative mixing

Political polarization on Twitter: political retweet network ,red color -
”right-learning” users, blue color - ”left learning” users

Assortative mixing = homophily

Conover et al., 2011
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Mixing by categorical attributes

Vertex categorical attribute (ci -label): color, gender, ethnicity

How much more often do attributes match across edges than
expected at random?

Modularity :

Q =
mc − 〈mc〉

m
=

1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci , cj)

mc - number of edges between vertices with same attributes
〈mc〉 - expected number of edges within the same class in random
network

Assortativity coefficient:

Q

Qmax
=

∑
ij

(
Aij −

kikj
2m

)
δ(ci , cj)

2m −
∑

ij
kikj
2m δ(ci , cj)
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Mixing by scalar values

Vertex scalar value (attribute) - xi
How much more similar are attributes across edges than expected at
random?
Average and covariance over edges

〈x〉 =

∑
i kixi∑
i ki

=
1

2m

∑
i

kixi =
1

2m

∑
ij

Aijxi

var =
1

2m

∑
ij

Aij(xi − 〈x〉)2 =
1

2m

∑
i

ki (xi − 〈x〉)2

cov =
1

2m

∑
ij

Aij(xi − 〈x〉)(xj − 〈x〉)

Assortativity coefficient

r =
cov

var
=

∑
ij

(
Aij −

kikj
2m

)
xixj∑

ij

(
kiδij −

kikj
2m

)
xixj
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Mixing by node degree

Assortative mixing by node degree, xi ← ki

r =

∑
ij

(
Aij −

kikj
2m

)
kikj∑

ij

(
kiδij −

kikj
2m

)
kikj

Computations:
S1 =

∑
i ki = 2m

S2 =
∑

i k
2
i

S3 =
∑

i k
3
i

Se =
∑

ij Aijkikj

Assortatitivity coefficient

r =
SeS1 − S2

2

S3S1 − S2
2
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Mixing by node degree

Assortative network: interconnected high degree nodes - core, low
degree nodes - periphery
Disassortative network: high degree nodes connected to low degree
nodes, star-like structure

Assortative network Disassortative network
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Degree correlation

from A.L. Barabasi, 2016
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