Network formation models

I. Makarov \& L.E. Zhukov

BigData Academy MADE from Mail.ru Group

Social Network Analysis and Machine Learning on Graphs

Network models

Empirical network features:

- Power-law (heavy-tailed) degree distribution
- Small average distance (graph diameter)
- Large clustering coefficient (transitivity)

Generative models:

- Random graph model (Erdos \& Renyi, 1959)
- Preferential attachment model (Barabasi \& Albert, 1999)
- "Small world" model (Watts \& Strogatz, 1998)

Random graph model

Graph $G\{E, V\}$, nodes $n=|V|$, edges $m=|E|$
Erdos and Renyi, 1959.
Random graph models

- $G_{n, m}$, a randomly selected graph from the set of C_{N}^{m} graphs, $N=\frac{n(n-1)}{2}$, with n nodes and m edges
- $G_{n, p}$, each pair out of $N=\frac{n(n-1)}{2}$ pairs of nodes is connected with probability p, m - random number

$$
\begin{gathered}
\langle m\rangle=p \frac{n(n-1)}{2} \\
\langle k\rangle=\frac{1}{n} \sum_{i} k_{i}=\frac{2\langle m\rangle}{n}=p(n-1) \approx p n \\
\rho=\frac{\langle m\rangle}{n(n-1) / 2}=p
\end{gathered}
$$

Random graph model

- Probability that i-th node has a degree $k_{i}=k$

$$
P\left(k_{i}=k\right)=P(k)=C_{n-1}^{k} p^{k}(1-p)^{n-1-k}
$$

(Bernoulli distribution)
p^{k} - probability that connects to k nodes (has k-edges)
$(1-p)^{n-k-1}$ - probability that does not connect to any other node
C_{n-1}^{k} - number of ways to select k nodes out of all to connect to

- Limiting case of Bernoulli distribution, when $n \rightarrow \infty$ at fixed $\langle k\rangle=p n=\lambda$

$$
P(k)=\frac{\langle k\rangle^{k} e^{-\langle k\rangle}}{k!}=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

(Poisson distribution)

Poisson Distribution

Random graph

Random graph model

$$
\langle k\rangle=p n=5
$$

Random graph model

Consider $G_{n, p}$ as a function of p

- $p=0$, empty graph $-\langle k\rangle=0$
- $p=1$, complete (full) graph $-\langle k\rangle=n-1$
- n_{G}-largest connected component, $s=\frac{n_{G}}{n}$

p

Phase transition

Let u - fraction of nodes that do not belong to GCC. The probability that a node does not belong to GCC

$$
\begin{aligned}
u=\frac{n-n_{G}}{n}=P(k=0)+ & P(k=1) \cdot u+P(k=2) \cdot u^{2}+P(k=3) \cdot u^{3} \ldots= \\
& =\sum_{k=0}^{\infty} P(k) u^{k}=\sum_{k=0} \frac{\lambda^{k} e^{-\lambda}}{k!} u^{k}=e^{-\lambda} e^{\lambda u}=e^{\lambda(u-1}
\end{aligned}
$$

Let s-fraction of nodes belonging to GCC (size of GCC)

$$
\begin{gathered}
s=1-u \\
1-s=e^{-\lambda s}
\end{gathered}
$$

when $\lambda \rightarrow \infty, \quad s \rightarrow 1$
when $\lambda \rightarrow 0, s \rightarrow 0$
$\lambda=p n=\langle k\rangle$

Phase transition

$$
s=1-e^{-\lambda s}
$$

non-zero solution exists when (at $s=0$):

$$
\lambda e^{-\lambda s}>1
$$

critical value:

$$
\begin{gathered}
\lambda_{c}=1 \\
\lambda_{c}=\langle k\rangle=p_{c} n=1, \quad p_{c}=\frac{1}{n}
\end{gathered}
$$

Numerical simulations

Random graph model GCC

$$
\langle k\rangle=p n
$$

evolution of random network

from A-L. Barabasi, 2016

Phase transition

Graph $G(n, p)$, for $n \rightarrow \infty$, critical value $p_{c}=1 / n$

- Subcritical regime: $p<p_{c},\langle k\rangle<1$ there is no components with more than $O(\ln n)$ nodes, largest component is a tree
- Critical point: $p=p_{c},\langle k\rangle=1$ the largest component has $O\left(n^{2 / 3}\right)$ nodes
- Supercritical regime: $p>p_{c},\langle k\rangle>1$ gigantic component has all $O\left(\left(p-p_{c}\right) n\right)$ nodes
- Connected regime: $p \gg \ln n / n,\langle k\rangle>\ln n$ gigantic component has all $O(n)$ nodes

Critical value: $\langle k\rangle=p_{c} n=1$ - on average one neighbor for a node

Numerical simulation

Threshold probabilities

Graph $G(n, p)$

Threshold probabilities when different subgraphs of k-nodes and l-edges appear in a random graph $p_{s} \sim n^{-k / I}$

When $p>p_{s}$:

- $p_{s} \sim n^{-k /(k-1)}$, having a tree with k nodes
- $p_{s} \sim n^{-1}$, having a cycle with k nodes
- $p_{s} \sim n^{-2 /(k-1)}$, complete subgraph with k nodes

Clustering coefficient

- Clustering coefficient (probability that two neighbors link to each other):

$$
\begin{gathered}
C_{i}(k)=\frac{\# \text { of links between NN }}{\# \text { max number of links NN }}=\frac{p k(k-1) / 2}{k(k-1) / 2}=p \\
C=p=\frac{\langle k\rangle}{n}
\end{gathered}
$$

- when $n \rightarrow \infty, \quad C \rightarrow 0$

Graph diameter

- $G(n, p)$ is locally tree-like (GCC) (no loops; low clustering coefficient)

- on average, the number of nodes d steps away from a node

$$
n=1+\langle k\rangle+\langle k\rangle^{2}+\ldots\langle k\rangle^{D}=\frac{\langle k\rangle^{D+1}-1}{\langle k\rangle-1} \approx\langle k\rangle^{D}
$$

- in GCC, around $p_{c},\langle k\rangle^{D} \sim n$,

$$
D \sim \frac{\ln n}{\ln \langle k\rangle}
$$

Random graph model

- Node degree distribution function - Poisson:

$$
P(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \lambda=p n=\langle k\rangle
$$

- Average path length:

$$
\langle L\rangle=\frac{\ln n}{\ln \langle k\rangle}
$$

- Clustering coefficient:

$$
C=\frac{\langle k\rangle}{n}
$$

Real networks

Degree distribution in real networks

Configuration model

- Random graph with n nodes with a given degree sequence: $D=\left\{k_{1}, k_{2}, k_{3} . k_{n}\right\}$ and $m=1 / 2 \sum_{i} k_{i}$ edges.
- Construct by randomly matching two stubs and connecting them by an edge.

- Can contain self loops and multiple edges
- Probability that two nodes i and j are connected

$$
p_{i j}=\frac{k_{i} k_{j}}{2 m-1}
$$

- Will be a simple graph for special "graphical degree sequence"

Motivation of Evolutional Random Graph Model

Most of the networks we study are evolving over time, they expand by adding new nodes:

- Citation networks
- Collaboration networks
- Web
- Social networks

Preferential attachment model

Barabasi and Albert, 1999
Dynamic growth model
Start at $t=0$ with n_{0} nodes and some edges $m_{0} \geq n_{0}$
(1) Growth

At each time step add a new node with m edges $\left(m \leq n_{0}\right)$, connecting to m nodes already in netwrok $k_{i}(i)=m$
(2) Preferential attachment

The probability of linking to existing node i is proportional to the node degree k_{i}

$$
\Pi\left(k_{i}\right)=\frac{k_{i}}{\sum_{i} k_{i}}
$$

after t timesteps: $t+n_{0}$ nodes, $m t+m_{0}$ edges

Preferential attachment model

Scale-Free Model
$t=1$

Preferential attachment

Continues approximation: continues time, real variable node degree $\left\langle k_{i}(t)\right\rangle$ - expected value over multiple realizations
Time-dependent degree of a single node:

$$
\begin{gathered}
k_{i}(t+\delta t)=k_{i}(t)+m \Pi\left(k_{i}\right) \delta t \\
\frac{d k_{i}(t)}{d t}=m \Pi\left(k_{i}\right)=m \frac{k_{i}}{\sum_{i} k_{i}}=\frac{m k_{i}}{2 m t} \\
\frac{d k_{i}(t)}{d t}=\frac{k_{i}(t)}{2 t}
\end{gathered}
$$

initial conditions: $\quad k_{i}(t=i)=m$

$$
\int_{m}^{k_{i}(t)} \frac{d k_{i}}{k_{i}}=\int_{i}^{t} \frac{d t}{2 t}
$$

Solution:

$$
k_{i}(t)=m\left(\frac{t}{i}\right)^{1 / 2}
$$

Preferential attachement

Node degree k as function of time t

Preferential attachement

Preferential attachment

Time evolution of a node degree

$$
k_{i}(t)=m\left(\frac{t}{i}\right)^{1 / 2}
$$

Nodes with $k_{i}(t) \leq k$:

$$
\begin{array}{r}
m\left(\frac{t}{i}\right)^{1 / 2} \leq k \\
i \geq \frac{m^{2}}{k^{2}} t
\end{array}
$$

Probability of randomly selected node to have $k^{\prime} \leq k$ (fraction of nodes with $k^{\prime} \leq k$)

$$
F(k)=P\left(k^{\prime} \leq k\right)=\frac{n_{0}+t-m^{2} t / k^{2}}{n_{0}+t} \approx 1-\frac{m^{2}}{k^{2}}
$$

Distribution function:

$$
P(k)=\frac{d}{d k} F(k)=\frac{2 m^{2}}{k^{3}}
$$

Preferential attachment vs random graph

Node degree distribution

$$
B A: P(k)=\frac{2 m^{2}}{k^{3}}, \quad E R: P(k)=\frac{\langle k\rangle^{k} e^{-\langle k\rangle}}{k!}, \quad\langle k\rangle=p n
$$

Preferential attachment vs random graph

Node degree distribution

Preferential attachment vs random graph

Preferential attachment model

$$
m=1
$$

$m=2$

$m=3$

Growing random graph

(1) Growth

At each time step add a new node with m edges $\left(m \leq n_{0}\right)$, connecting to m nodes already in network $k_{i}(i)=m$
(2) Preferential attachment Uniformly at random

The probability of linking to existing node i is

$$
\Pi\left(k_{i}\right)=\frac{1}{n_{0}+t-1}
$$

Node degree growth:

$$
k_{i}(t)=m\left(1+\log \left(\frac{t}{i}\right)\right)
$$

Node degree distribution function:

$$
P(k)=\frac{e}{m} \exp \left(-\frac{k}{m}\right)
$$

Preferential attachment

- Power law distribution function:

$$
P(k)=\frac{2 m^{2}}{k^{3}}
$$

- Average path length (analytical result) :

$$
\langle L\rangle \sim \log (N) / \log (\log (N))
$$

- Clustering coefficient (numerical result):

$$
C \sim N^{-0.75}
$$

Many more models

Some other models that produce scale-free networks:

- Non-linear preferential attachment
- Link selection model
- Copying model
- Cost-optimization model

Historical note

- Polya urn model, George Polya, 1923
- Yule process, Udny Yule, 1925
- Distribution of wealth, Herbert Simon,1955
- Evolution of citation networks, cumulative advantage, Derek de Solla Price, 1976
- Preferential attachment network model, Barabasi and Albert, 1999

Small world

Motivation: keep high clustering, get small diameter

Clustering coefficient $C=1 / 2$
Graph diameter $d=8$

Small world

Watts and Strogatz, 1998

Single parameter model, interpolation between regular lattice and random graph

- start with regular lattice with n nodes, k edges per vertex (node degree), $k \ll n$
- randomly connect with other nodes with probability p, forms pnk/2 "long distance" connections from total of $n k / 2$ edges
- $p=0$ regular lattice, $p=1$ random graph

Small world

Watts, 1998

Small world model

- Node degree distribution:

Poisson like

- Ave. path length $\langle L(p)\rangle$:
$p \rightarrow 0$, ring lattice, $\langle L(0)\rangle=2 n / k$
$p \rightarrow 1$, random graph, $\langle L(1)\rangle=\log (n) / \log (k)$
- Clustering coefficient $C(p)$:
$p \rightarrow 0$, ring lattice, $C(0)=3 / 4=$ const
$p \rightarrow 1$, random graph, $C(1)=k / n$

Small world model

20\% rewiring:
ave. path length $=3.58 \rightarrow$ ave. path length $=2.32$
clust. coeff $=0.49 \quad \rightarrow \quad$ clust. coeff $=0.19$

Model comparison

	Random	BA model	WS model	Empirical networks
$\mathrm{P}(\mathrm{k})$	$\lambda^{k} e^{-\lambda}$	k^{-3}	poisson like	power law
C	$\langle k\rangle / N$	$N^{-0.75}$	const	large
$\langle L\rangle$	$\frac{\log (N)}{\log (\langle k\rangle)}$	$\frac{\log (N)}{\log \log (N)}$	$\log (N)$	small

References

- On random graphs I, P. Erdos and A. Renyi, Publicationes Mathematicae 6, 290-297 (1959).
- On the evolution of random graphs, P. Erdos and A. Renyi, Publicaton of the Mathematical Institute of the Hungarian Academy of Sciences, 17-61 (1960)
- Emergence of Scaling in Random Networks, A.L. Barabasi and R. Albert, Science 286, 509-512, 1999
- Collective dynamics of small-world networks. Duncan J. Watts and Steven H. Strogatz. Nature 393 (6684): 440-442, 1998

