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Lecture outline

@ Knowledge Graph

© KG Retrieval from NL Texts
@ KG Completion
@ KG Reasoning
@ KG Applications
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Knowledge Graphs

Main idea

e Knowledge as graphs (linked data)

o Nodes as entities

o Labels as attributes

o Edges as relation types (heterogeneous network)
Applications

@ Analytic representation of data

@ Interpretable decision making
@ Reasoning & QA
o

Edges as relation types (heterogeneous network)
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The Semantic Web

RDF representation
@ r(s,p,0)= subject—predicate-object relation
@ ABox representing data
@ TBox representing rules (ontologies)
o rdfs:domain, rdfs:range, rdf:type, rdfs:subClassOf, rdfs:subPropertyOf
°

owl:inverseOf, owl: TransitiveProperty, owl:FunctionalProperty
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Knowledge Extraction vs. KG Construction

Problem KE KG
Who are entities? NER & Coreference | Entity Linking
What are the attributes? NER Classification
How are they connected? | Relation extraction | Link Prediction

Table: Difference in view on knowledge mining
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Knowledge Extraction

o Entity resolution, Entity linking, Relation Extraction (corpora)
o Coreference resolution (document)

e Dependency parsing, part of speech tagging, NER (sentence)
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John was born in Liverpool, to Julia and Alfred Lennon.

from https://kgtutorial.github.io/, 2018
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Knowledge Extraction Methods

Tagging parts of speech: CRF, CNN, bi-LSTM
Detecting and classifying names: rules, vocabulary, DL

Relations by dependency patterns + pronouns coreference

Entity linking by candidate generation via entity coherence and
neglecting by entity type

@ Dependency parsing, part of speech tagging, NER (sentence)
Human in the loop
Define domain (vocabulary, taxonomy, ontology)
Learn extractor

°
°

@ Score facts
@ Manual — semi-automated — automated
°

Human Efforts & Precision vs. Speed & Recall
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Automating Knowledge Extraction

Domain
@ Human made
o Partial labelling and transfer learning for semi-supervised detection
@ Any noun and verb are candidates
Extractor
o Manual labelling
@ Templates and manual post-processing
@ Cluster SVO patterns by NER types
Scoring
@ Manual scoring
@ Learning scoring over labelled and unlabelled data

@ Support and confidence metrics for extracted patterns compared to all
the detected patterns
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Knowledge Extraction Systems

Domain Extractor Scoring Fusion
ConceptNet Human Human Human
NELL Human Semi-Automated Automated Heuristics
Knowledge vault | Automated Automated Semi-Automated | Classifier
OpenlE Automated Automated Semi-Automated

Table: Knowledge Extraction Systems

from https://kgtutorial.github.io/, 2018
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Knowledge Extraction Problems

@ ambiguity
@ incompleteness
@ inconsistency
Solutions:
@ Probabilistic reasoning & rule mining
@ Random walks and personalized PR
@ Proof construction for reasoning over KG
°

Pair of nodes and relation embedding

from https://kgtutorial.github.io/, 2018
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Relation Extraction and KG Completion

e Similar Pairs of Entities refer to similar relations (not identical)
@ Similar Relations refer to paraphrases or implications
@ Logical rules — Embedding space

surface pattern relation
relation . relation
Relation
—_— .  ——
Extraction Oflatyo
surface pattern
relation

relation

relation
relation

Graph
Completion

relation

from https://kgtutorial.github.io/, 2018
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KG Completion

Tensor Formulation of KG
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from https://kgtutorial.github.io/, 2018

. Makarov & L.E. Zhukov (MADE) Lecture 12 18.05.2021 12 /30


https://kgtutorial.github.io/

KG Completion

CANDECOMP/PARAFAC-Decomposition
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KG Completion

* Red: deterministically implied by Black

- needs pair-specific embedding

- Only F is able to generalize
« Green: needs to estimate entity types

- needs entity-specific embedding

- Tensor factorization generalizes, F doesn't
* Blue: implied by Red and Green

- Nothing works much better than random

Average Precision
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KG Completion

@ Compose different relations over consequent embedding from texts
@ Use Neural Networks instead of Reasoning

@ Construct hierarchy in automated way merging pairs and relations
based on task-dependent scoring from DL model

countryBasedIn

|
stateBasedin /m

]

) isBasedin statelocatedin ) countryLocatedin
Microsoft Seattle Washington USA

from Singh et al., 2015
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KG Challenges

Multi-language generalization
Dealing with multi-modal data
Visual-aware KG construction & captioning

Temporal construction, correction, justifying

Dealing with specific entities (dates, slang words)
@ Changing semantics over time and language evolution

Applications

https://towardsdatascience.com/knowledge-graphs-in-natural-language-processing-acl-2020
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ComplEx embedding of KG, RoBERTa for question embedding
Triple (main entity in question, question, answer in 2-hop
neighborhood of main entity)
Use Neural Networks instead of Reasoning

Construct hierarchy in automated way merging pairs and relations
based on task-dependent scoring from DL model
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from Saxena et al., 2020
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@ Neulnfer architecture
@ Hierarchy Mixing
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KG-to-Text

@ Transformers rule out !

Walter Extra is

e N
/ Table encoder v add The swicth 1

e S O .. policy

Input Table
Attribute (R)  Value (V)
Name ‘Walter Extra
Nationality ~ German
Occupation  Aircraft designer
and manufacturer

1
Attention weights :

i
|
|
1
I
I
1
I
I
1
I
I
I
I
I
I
I
I
I
N

N

IWalter Ex(ra\ is a

(Walter Exira ) German
Iname  name nauonaltlly}

1 p lname namel - -
\pl - 22__1 7

i [
position information \ P 172 , - -
Matching iaial falnie

Figure 1: Overview of our approach: Under the base framework with switch policy, the pre-trained language model serves as
the generator. We follow the same encoder as in (Liu et al., 2018). The architecture is simple in terms of both implementation
and parameter space that needs to be learned from scratch, which should not be large given the few-shot learning setting.

from Chen et al., 2020
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KG-to-Text

@ Graph — Text — Graph(s) generation

View 1: triple relations

:
i

' ARGO
' \
|

:

Attention Language
@ ©M©
oss

View 2: linearized graph

- want :ARGO boy :ARG1 eat (:ARGO (girl :mod beautiful) :ARG1 lunch :ARG2 boy)

Figure 2: The training framework using multi-view autoencoding losses.

from Song et al., 2020
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KG-to-Text

@ R-GCN for embeddings of bi-gram relations from triple s-p-o
@ Planner for counting used relations
@ LSTM Decoder

.- Graph Encoder -

_Planner

i (predicatel

Input
Triples

! (predicate2 ) i

—-------- Text Decoder ~

Figure 2: The architecture of the proposed DUALENC model. The input triples are converted as a graph and then
fed to two GCN encoders for plan and text generation (Planner and Graph Encoder, top center). The plan is then
encoded by an LSTM network (Plan Encoder, bottom center). Finally an LSTM decoder combines the hidden
states from both the encoders to generate the text (Text Decoder, middle right).

from Zhao et al., 2020
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KG-to-Text

@ Attention from Transformer and GAT on OpenlE

@ Training using RL on extracting OpenlE graphs from human-written
summaries and generating questions — QA model inside !

o GPT-3 idea — train what you can

Input Article
Mayor s Admission
of Cocaine Use ...

|

[ RoBERTa Layers ]

- -’[ Node Initialization ]

; g ;
[ Bi-LSTM Layer }———7 [ GAT Layers J
] 1]
[ Attention Layer ] [ Attention Layer

| Generated Summary

Figure 2: Our ASGARD framework with document-
level graph encoding. Summary is generated by attend-
ing to both the graph and the input document.

from Huang et al., 2020
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Neural, Symbolic and Neural-Symbolic Reasoning on KGs

@ Neural Reasoning as Logic Query Embedding

@ Symbolic Reasoning as

@ Combined approach tends to extract graph and quantify its usability

to the task

Input question

Templates

which actor starred in the movie that
is directed by her brother

Semantic dependency graph

‘Natural language pattern
| Which movie is directed by <Person>?
| Who is <Person>'s brother?

— ——7 Where was <Person> born?
‘Which actor starred in <Moive>? .
.

SPARQL patterii
movie, directedBy, <Person>
<Person>, brother, ?person

+  ?actor, starring, <Movie>

t1: Which acfor starred in <Moiye>?

the miovie

| t:Which movie is directed by <Rerson>?

ther ~ t;:Who is <Person>'s brother?

her

SELECT ?Actor WHERE{
?Actor starring ?Moive .
?Moive directedBy ?Person .
?Actor brother ?Person .
b Answer:

<Person>, birthPlace, ?place |
\ Knowledge Graph

SPARQL query

Free text

corpus

5
o D
oo

S
|

Anne Spielberg

Zhang et al., 2021
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CQE on KGs

Use disjunctive normal form

Box projection and intersectio

(A) Query q and Its Dependency Graph

q =V, 3V : Win(TuringAward,V) A Citizen(Canada, V)

Consider conjunctive parts separately

n for unifying results

Extension in BetaE for negations

(B) Computation Graph
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A Graduate(V,Vy)
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McGill N Trudeau

Leskovec et al., 2018
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KG-to-RecSys

@ Embed paths in User-ltem-Entity
@ Extract Similarities via KG-based Embedding instead of User-ltem

decomposition

|. Makarov & L.E. Zhukov (MADE)

a) Metapath UMDMU
Cm == )G

Figure 2: Movie Network Meta Paths

Table 1: Metapaths captured from IMDB schema

IMDB Metapaths

user - movie

user - movie - director - movie

user - movie - actor - movie

user - movie - genre - movie
user - movie - language - movie
user - movie - keyword - movie
movie - genre - movie - director
director - movie - actor - movie
director - movie - genre - movie
Tanguage - movie

keyword - movie

from Kallumadi, Surya, and William H. Hsu., 2018
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KG-to-RecSys
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from Guo et al., 2018
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Open Challenges

Leaks in Evaluation, Negative Sampling
Tensor Decomposition for small KG
Extracting n-ary relations

Integration in IR is hard if KG quality is poor

Reasoning/ontology always face complexity issues

Tutorials
@ https://sites.google.com/site/knowxtext/
@ https://neodj.com/developer/graph-data-science/
build-knowledge-graph-nlp-ontologies/
@ https://dzone.com/articles/
text-mined-knowledge-graphs-beyond-text-mining
Reasoning over ontology:
e TBox: “Male Vv Female — Human"
o Boolean Query: “Male(x) A Knows(x,y) A Female(y)"”
o L/NL complexity — Theoretical Computer Science
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