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Graph machine learning

Node classification (attribute inference)
Link prediction (missing/hidden links inference)

Community detection (clustering nodes in graph)

Graph visualization (cluster projections)

|. Makarov & L.E. Zhukov (MADE) Lecture 10 26.04.2021 2/28



Lecture outline

0 Graph Embeddings
@ Problem statement
@ Structural graph embeddings (simple models)
@ Structural graph embeddings (mixed-hop models)
@ Structural graph embeddings (with attributes)
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Graph Embeddings

@ Necessity to automatically select features
@ Reduce domain- and task- specific bias
@ Unified framework to vectorize network
@ Preserve graph properties in vector space

@ Similar nodes — close embeddings
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from Leskovec et al., 2018t

"http://snap.stanford.edu/proj/embeddings-www/
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Graph Embeddings

Define Encoder

Define Similarity/graph feature to preserve graph properties
Define similarity/distance in the embedding space

Optimize loss to fit embedding with similarity computed on graph

Goal: similarity(u, v) ~ z, z,,

AN
[Need to define! |
2
original network embedding space

from Leskovec et al., 2018
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Structural Graph Embeddings

Embedding look-up (each node - separate vector)

o Different similarity measures (adjacency, common neighbours,
distances, exact function, etc.)

Quadratic optimization for MSE loss

Fast models via random walks
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First-order Proximity

@ Similarity between u and v is A,y
@ MSE Loss

@ Variant of Matrix Decomposition

: Z |z, 2 _@u,vH2
/ (u,w)EV XV \ \

loss (what we embedding
want to minimize) similarity

(weighted)
adjacency matrix
for the graph

from Leskovec et al., 2018
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First-order Proximity

@ Pros:

e Use SGD for scalable optimization

o Matrix factorization (SVD) or decomposition (QR) may be applicable
o Cons:

e Quadratic complexity
o Large embeddings space
e No indirect graph properties are preserved
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Multi-order Proximity

@ Similarity of neighborhoods of u and v via indices or k-hop paths
@ Direct optimization of exact similarity metric

» Red: Target node
. 1-hop neighbors
+ Afi.e., adiacency matrix)
« Blue: 2-hop neighbors
o A2
* Purple: 3-hop neighbors
. A3

L=  lzgz.— AL

from Leskovec et al., 2018
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Multi-order Proximity

e Similarity score S,, as Jaccard/Common Neighbours, etc. (HOPE)
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o Weighted k-hop paths with different k (GraRep)
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@ Even worse complexity
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Random Walks

@ Similarity between u and v is probability to co-occur on a random
walk

@ Sample each vertex u neighborhood Ng(u) (multiset) by short
random walks via strategy R

@ Optimize similarity considering independent neighbor samples via
MLE (remind Word2Vec)

L=3, > —log(P(v]z.))

ueV veENRr(u)

from Leskovec et al., 2018
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Random Walks

o P(v|z,) is approximated via softmax over similarity z/ - z,

L=y Y - (Z exp(zIsz) )

exXpl\z, Z
UGV’UGNR u) neV p( u n)

@ Problem in second ¥ over all nodes

@ Hard to find optimal solution
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Negative Sampling

@ Use Negative Sampling to approximate denominator

random distribution
over all nodes

GXP(ZIZU)
log —
EnEV exp(z Zn)

~ log(o( z Zy)) Zlog zZ zni)),nimPV

from Leskovec et al., 2018
@ Sample in proportion to node degree
@ Experiment with k to impact negative prior and robustness

@ No need to sample non-connected edges — same as random
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Random Walk Strategies

@ Finite unbiased random walks (DeepWalk)

@ 1-hops & 2-hops for half of the embedding, arbitrary random walks
for the second half of the embedding (LINE)

e Diffusion for sampling (Diff2Vec)
@ Biased random walks combining BFS and DFS (Node2Vec)
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DeepWalk & LINE

@ DeepWalk: Unbiased random walks with fixed length and number

@ LINE: Combination of first-order and second-order proximity
aggregation via concatenation

INE(2nd)
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Node2Vec

@ BFS samples local neighborhood, DFS goes for global features

BFS: DFS:

@ Two parameters p and g to control sampling

@ Second order Markov process
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Node2Vec

@ Parameters are multiplied by edge weights and normalized for random
walk probabilities

1/p,1/q,1 are
unnormalized
probabilities

p, ¢ model transition probabilities
= p ... return parameter
* g ... walk away” parameter
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Diff2vec

@ Sample node according to supervised diffusion

e Efficient initialization and [possibility to control clustering parameters]

Relative graph distance
approximation error

CDF
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Grarep & Walklets

o Grarep: Approximate normalized A efficiently
o Walklets: approximate attention over k-distance neighbors

(a) A student (in red) is a member of several (b) WALKLETS Fine Representation
i ing larger social itie
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GEMSEC

o GEMSEC model cluster information adding regularization term over
community labels given number of classes

@ parameter v balance cluster error and cluster structure given model
hyper-parameters

o %0 ? L= Z [111 (Z exp(f(v)-f(u))) = Z f(m)-f(v)-l
,;i;::." ° vev l uev nieNs (v) J
(\i’? %o o 2 b . Embedding cost
A g +7- ZIcrgg 1 F(v) = pell, - 5)
Qs veV
o é

o
(a) DeepWalk (b) GEMSEC Clustering cost

|. Makarov & L.E. Zhukov Lecture 10 26.04.2021 20/28



M-NMF

@ Modularized Nonnegative Matrix Factorization (M-NMF) incorporates
first-second order proximity together with community structure.

S5 =51+ 1Sy, 5; goes for i-th order proximity.

C represents community structure.

H represents nodes community labels.

B stands for (A,-j — ;’2) matrix in modularity function.

e U is our embedding.

w0 I8 = MU} + of[H — UCT [} — fir (H” BH)

s, M>=0,U=0,H>0,C2=0,tr(H H) =
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HOPE

HOPE is specific asymmetric transitivity preserving graph embedding.
Asymmetric similarity measures can be formulated as § = MglM/.
Katz index refers to My = | — BA, M; = BA.

Rooted PageRank can be stated as

Mg =1—aP, M;=(1-a)P, P=D1A

Common neighbors is represented by My = I, M; = A2.

e Adamic-Adar with Mg = I, M; = ADA.

@ Generalized SVD and directly estimate matrices Mg and M.
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Other models

e Structural Deep Network Embedding (SDNE) uses autoencoder via
Laplacian eigenmaps.

@ Watch Your Step: Learning Node Embeddings via Graph Attention -
attention on random walks aggregation without use on inference

@ Metapath2vec adapts random walks on heterogeneous networks

@ Discriminative Deep Random Walk (DDRW) includes label
regularization to incorporate classification task
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Diffusion Wavelets for Structural Similarity

@ GraphWave learns heat wavelet diffusion patterns. Nodes with similar
neighbors will have similar GraphWave embeddings.

e O(|E|) performance

'Hm

Cold
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VERSE for Structural Similarity

@ VERSE uses conditional probability not on the embedding, but on the
similarity rank.

e O(|E|) performance

exp(W,WT)
?:1 €Xp (Wv ) M)
L=- Z simg(v, -) log (simg (v, -))
veV
LNCE = Z IlogPrW(D = 1|simg(u, v))+

u~P
v~simg(u,-)

simg(v,-) =

SE'E?"»Q(H) lOg PI’“F(D = 0|Sme[t£, ﬁ}]
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Short conclusion for structural Graph Embeddings

@ Random walks are powerful tool for fast network embedding

@ Proximity-aware embeddings, random walks can be modeled in terms
of each other (and even deep neural networks !)

@ complexity and space are important to choose the embedding model

@ provided models are used for transductive learning only, inductive
learning require additional regularizations and local optimizations

@ large graphs are hard to fit with handcrafted sampling strategies

@ no clear way to support features
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